6. Consider the hyperbola $H: x^2 - y^2 = 1$ and a circle S with center $N(x_2, 0)$. Suppose that H and S touch each other at a point $P(x_1, y_1)$ with $x_1 > 1$ and $y_1 > 0$. The common tangent to H and S at P intersects the x-axis at point M. If (l, m) is the centroid of the triangle PMN, then the correct expression(s) is(are) (JEE Adv. 2015)

(a)
$$\frac{dl}{dx_1} = 1 - \frac{1}{3x_1^2}$$
 for $x_1 > 1$

(b)
$$\frac{dm}{dx_1} = \frac{x_1}{3\left(\sqrt{x_1^2 - 1}\right)}$$
 for $x_1 > 1$

(c)
$$\frac{dl}{dx_1} = 1 + \frac{1}{3x_1^2}$$
 for $x_1 > 1$

(d)
$$\frac{dm}{dy_1} = \frac{1}{3}$$
 for $y_1 > 0$

Solution: -

6. (a, b, d) H: $x^2 - y^2 = 1$ S: Circle with centre N(x_2 , 0) Common tangent to H and S at P(x_1 , y_1) is

$$xx_1 - yy_1 = 1 \implies m_1 = \frac{x_1}{y_1}$$

Also radius of circle S with centre $N(x_2, 0)$ through point of contact (x_1, y_1) is perpendicular to tangent

$$\therefore \quad m_1 m_2 = -1 \Rightarrow \frac{x_1}{y_1} \times \frac{0 - y_1}{x_2 - x_1} = -1$$

 $\Rightarrow x_1 = x_2 - x_1 \text{ or } x_2 = 2x_1$ *M* is the point of intersection of tangent at *P* and *x*-axis $\therefore M\left(\frac{1}{x_1}, 0\right)$ $\therefore \text{ Centroid of } \Delta \text{PMN is } (\ell, \text{m})$ $\therefore x_1 + \frac{1}{x_1} + x_2 = 3\ell \text{ and } y_1 = 3\text{m}$ $\text{Using } x_2 = 2x_1,$ $\Rightarrow \frac{1}{3}\left(3x_1 + \frac{1}{x_1}\right) = l \text{ and } \frac{y_1}{3} = \text{m}$ $\therefore \frac{dl}{dx_1} = 1 - \frac{1}{3x_1^2}, \frac{dm}{dy_1} = \frac{1}{3}$

Also (x_1, y_1) lies on H, $\therefore x_1^2 - y_1^2 = 1$ or $y_1 = \sqrt{x_1^2 - 1}$

$$\therefore \quad m = \frac{1}{3}\sqrt{x_1^2 - 1} \quad \therefore \quad \frac{dm}{dx_1} = \frac{x_1}{3\sqrt{x_1^2 - 1}}$$